Uniform Exponential Attractors for Non-Autonomous Strongly Damped Wave Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Exponential Attractors for Non-Autonomous Strongly Damped Wave Equations

In this paper, we study the existence of exponential attractors for strongly damped wave equations with a time-dependent driving force. To this end, the uniform Hölder continuity is established to the variation of the process in the phase apace. In a certain parameter region, the exponential attractor is a uniformly exponentially attracting time-dependent set in the phase apace, and is finite-d...

متن کامل

Uniform Exponential Attractors for a Singularly Perturbed Damped Wave Equation

Our aim in this article is to construct exponential attractors for singularly perturbed damped wave equations that are continuous with respect to the perturbation parameter. The main difficulty comes from the fact that the phase spaces for the perturbed and unperturbed equations are not the same; indeed, the limit equation is a (parabolic) reaction-diffusion equation. Therefore, previous constr...

متن کامل

Attractors for Strongly Damped Wave Equations with Critical Nonlinearities

In this paper we obtain global well-posedness results for the strongly damped wave equation utt + (−∆)θut = ∆u + f(u), for θ ∈ [1 2 , 1 ] , in H 0(Ω)×L(Ω) when Ω is a bounded smooth domain and the map f grows like |u|n+2 n−2 . If f = 0, then this equation generates an analytic semigroup with generator −A(θ). Special attention is devoted to the case when θ = 1 since in this case the generator −A...

متن کامل

Global Attractors for Damped Semilinear Wave Equations

The existence of a global attractor in the natural energy space is proved for the semilinear wave equation utt + βut − ∆u + f(u) = 0 on a bounded domain Ω ⊂ R with Dirichlet boundary conditions. The nonlinear term f is supposed to satisfy an exponential growth condition for n = 2, and for n ≥ 3 the growth condition |f(u)| ≤ c0(|u|γ + 1), where 1 ≤ γ ≤ n n−2 . No Lipschitz condition on f is assu...

متن کامل

Uniform attractors for non-autonomous suspension bridge-type equations

We discuss the long-time dynamical behavior of the non-autonomous suspension bridge-type equation, where the nonlinearity g(u, t) is translation compact and the time-dependent external forces h(x, t) only satisfy Condition (C∗) instead of being translation compact. By applying some new results and the energy estimate technique, the existence of uniform attractors is obtained. The result improve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Physics

سال: 2014

ISSN: 2327-4352,2327-4379

DOI: 10.4236/jamp.2014.28086